

Mark Scheme (Results) June 2010

GCE

GCE Chemistry (6CH04/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

Summer 2010
Publications Code UA023636
All the material in this publication is copyright
© Edexcel Ltd 2010

Section A (multiple choice)

Question Number	Correct Answer	Mark
1 (a)	D	1
. ()	1-	<u> </u>
Question Number	Correct Answer	Mark
1 (b)	D	1
Question Number	Correct Answer	Mark
1 (c)	A	1
Question Number	Correct Answer	Mark
2	В	1
Question Number	Correct Answer	Mark
3	С	1
		1
Question Number	Correct Answer	Mark
4	D	1
Question Number	Correct Answer	Mark
5	В	1
Question Number	Correct Answer	Mark
6	A	1
Question Number	Correct Answer	Mark
7 (a)	C	1
Question Number	Correct Answer	Mark
7 (b)	В	1
Question Number	Correct Answer	Mark
7 (c)	D	1
Question Number	Correct Answer	Mark
8	В	1

Question	Correct Answer	Mark
Number		
9	D	1
Question	Correct Answer	Mark
Number		
10	D	1
Question	Correct Answer	Mark
Number		
11	В	1
Question	Correct Answer	Mark
Number		
12	A	1
Question	Correct Answer	Mark
Number		
13	В	1
Question	Correct Answer	Mark
Number		
14	С	1
Question	Correct Answer	Mark
Number		
15	С	1
Question	Correct Answer	Mark
Number		
16	A	1
	·	

Section B

Question Number	Acceptable Answers	Reject	Mark
17 (a)(i)	5.7 x 10 ⁻⁵ /5.71 x 10 ⁻⁵ /5.714x 10 ⁻⁵ /0.000057 <i>IGNORE</i> SF except 1 (ie don't accept 6 x 10 ⁻⁵)		1

Question Number	Acceptable Answers	Reject	Mark
17 (a)(ii)	C ₄ H ₉ Br: first order / 1 (1) (going from first to second experiment) rate doubles when concentration / number of moles doubles (and [OH ⁻] constant)/ rate and concentration increase in proportion (1) ALLOW 'time halves' instead of 'rate doubles' OH ⁻ : zero order / 0 and (going from second to third expt) as increase in concentration does not affect rate (and [C ₄ H ₉ Br] constant) (1) ALLOW 'doubling in concentration of OH ⁻ instead of 'increase in concentration' ALLOW time increases by the same factor as increase in hydroxide concentration (5/3) May refer to experiment number rather than concentrations		3

Question Number	Acceptable Answers	Reject	Mark
17 (a)(iii)	Rate = $k[C_4H_9Br]$ OR Rate = $k[C_4H_9Br]^1[OH^-]^0$ ALLOW k in lower or upper case Rate equation must be consistent with orders in (a)(ii) If no order is given for hydroxide in (ii) mark cannot be given		1

Question Number	Acceptable Answers	Reject	Mark
17 (a)(iv)	$k = \frac{2.9 \times 10^{-5}}{0.017}$ = 1.7 x 10 ⁻³ / 1.71 x 10 ⁻³ / 1.706 x 10 ⁻³ s ⁻¹ ALLOW k=1.68 x 10 ⁻³ (value obtained from experiment 2 or 3) value of k (1) units (1) stand alone mark ALLOW TE from (a)(iii) IGNORE SF except 1 Rate = $k[C_4H_9Br]^2$ gives k= 0.10036 dm³ mol ⁻¹ s ⁻¹ Rate = $k[C_4H_9Br][OH^-]$ gives k= 1.42 dm³ mol ⁻¹ s ⁻¹ ALLOW k=1.39 dm³ mol ⁻¹ s ⁻¹ (value obtained from experiment 2 or 3) Rate = $k[C_4H_9Br][OH^-]^2$ gives k= 1184.6 dm6 mol ⁻² s ⁻¹ Rate = $k[C_4H_9Br]^2[OH^-]^2$ gives k= 83.62 dm6 mol ⁻² s ⁻¹		2

Question Number	Acceptable Answers	Reject	Mark
17(b)	[OH ⁻] is (in chemical equation but) not in rate equation / not in rate determining step (so is in a step other than rate determining step)		1
	OR		
	Only C_4H_9Br is in rate equation / rate determining step (so OH^- is in a step other than rate determining step)		

Question Number	Acceptable Answers	Mark
17 (c)	First mark Choice of bromoalkane must be consistent with rate equation in (a)(iii). If $[OH^-]$ is not in rate equation, secondary/tertiary bromoalkane. If $[OH^-]$ is in rate equation, primary/secondary bromoalkane. (1) Second and third marks Either SN1 or SN2 mechanism can score 2 marks regardless of choice of bromoalkane. $C_{N_3} - C_{-R_c} \longrightarrow C_{N_3} - C_{-R_c} \longrightarrow C_{N_3} - C_{-R_c} \longrightarrow C_{-R_c} C_{-R_c} \longrightarrow$	3
	Lone pairs not required Curly arrow from C-Br bond to Br (making Br ⁻) (1) Curly arrow from anywhere on OH ⁻ / HO ⁻ to C ⁺ in correct intermediate (making alcohol) (1)	
	OR $ \begin{array}{c} $	
	Both curly arrows from OH ⁻ and from C-Br bond to Br (may both be shown at start) (1) Transition state including minus charge (and product) (1) Do not penalise if C ₂ H ₅ shown instead of C ₃ H ₇ . Bonds in transition state can be dotted. Do not penalise the missing H atoms in alkyl groups in mechanism.	

Question Number	Acceptable Answers	Reject	Mark
17 (d) QWC	(Primary and tertiary) carbocation intermediates have different stabilities (1) as (inductive effects of) alkyl groups stabilise tertiary carbocation (1) OR Steric hindrance differs for attack on primary and tertiary carbon (in the molecule) / less space available for attack by OH ⁻ on tertiary carbon / more space for attack by OH ⁻ on primary carbon (1) as bulky / three alkyl groups obstruct attack (1)	"Tertiary bromoalkanes react by SN1" without further explanation carbocation intermediates have different reactivity steric hindrance in carbocation	2

Question Number	Acceptable Answers	Reject	Mark
18 (a)(i)	(Acid) hydrolysis	substitution	1

Question Number	Acceptable Answers	Reject	Mark
18 (a)(ii)	K ₂ Cr ₂ O ₇ / Na ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ²⁻ Potassium dichromate((VI)) / sodium dichromate((VI)) / dichromate((VI)) ions ALLOW manganate((VII)) ions, etc	Just "dichromate" chromates Correct formula with wrong name and vice versa Incorrect oxidation number	1

Question Number	Acceptable Answers	Reject	Mark
18 (a)(iii)	Lithium tetrahydridoaluminate/ lithium aluminium hydride/ LiAIH4 (in dry ether)	Just [H ⁻]	1

Question Number	Acceptable Answers	Reject	Mark
18 (a)(iv)	Methyl butanoate (1) CH ₃ CH ₂ CH ₂ COOH + CH ₃ OH → CH ₃ CH ₂ CH ₂ COOCH ₃ + H ₂ O (1)	Methyl butoate	2
	ALLOW → IGNORE state symbols even if wrong		

Question Number	Acceptable Answers	Reject	Mark
18 (a)(v)	CH ₃ -CH ₂ -CH ₂ -C Cl Don't penalise undisplayed methyl groups as here. COCI must be displayed as above.	C ₃ H ₇ for CH ₃ CH ₂ CH ₂	1

Question Number	Acceptable Answers	Reject	Mark
18 (b)(i)	Nitrogen inert / unreactive / less reactive (than oxygen)		1
	OR		
	Oxygen might react with chemicals going through column / sample might oxidise		

Question Number	Acceptable Answers	Reject	Mark
18 (b)(ii)	Solubility (in liquid / stationary phase) OR	Size of molecule / molar mass	1
	Interaction with liquid / stationary phase OR	Polarity, unless with explanation	
	Interaction between mobile and stationary phase	Boiling point / volatility	
	OR	Viscosity	
	Attraction for liquid / stationary phase OR	Attraction for carrier gas	
	Strength of (named) intermolecular forces OR	Just a named intermolecular force	
	Adsorption on liquid / stationary phase OR	Just 'retention time' Density	
	Absorption on liquid / stationary phase		

Question Number	Acceptable Answers	Reject	Mark
18 (c)(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	Ester link including C=O (1) Rest of polymer with oxygens at end correct (1) All H atoms must be shown. PENALISE lack of displayed C=O once only ACCEPT Without brackets around formula but bonds at end should be shown More than two correct units IGNORE n after brackets		

Question Number	Acceptable Answers	Reject	Mark
18 (c)(ii)	Hydrolysis OR		1
	Splits / breaks ester link	Just 'breaks polymer down'	
	OR	polymer down	
	polymer breaks down to monomers		
	OR		
	equation showing hydrolysis		

Question Number	Acceptable Answers	Reject	Mark
19 (a)(i)	$(K_p =) \frac{pCH_3CO_2H}{pCH_3OH} (x) pCO$ Partial pressure symbol can be shown in various ways, eg pp, p _{CO} , (CO)p, etc ALLOW p in upper or lower case, round brackets IGNORE units	[] State symbols given as (I) + in bottom line	1

Question Number	Acceptable Answers	Reject	Mark
19 (a)(ii)	P CH ₃ OH = 4.9 (atm) (1) P CO = 4.9 (atm) (1) 1 mark for recognition that pressures are equal IGNORE units		2

Question Number	Acceptable Answers	Reject	Mark
19 (a)(iii)	$K_p = ((22.2)/(4.9)^2)$ = 0.925 (1) atm ⁻¹ (1) stand alone mark but must match expression used in (a)(iii) OR 9.25 x 10 ⁴ Pa ⁻¹ / 92.5 kPa ⁻¹ (2) ALLOW TE from (a)(i) if inverted and/or (a)(ii)	Answers to other than 3 significant figures	2

Question Number	Acceptable Answers	Reject	Mark
19 (b)(i)	CH ₃ OH: 3.2 CO : 3.2 (1) for both values		2
	CH ₃ CO ₂ H: 46.8 (1)		
	ALLOW TE for moles of ethanoic acid based on numbers of methanol and carbon monoxide used, as long as moles of methanol and carbon monoxide are equal and moles ethanoic acid + moles methanol = 50		

Question Number	Acceptable Answers	Reject	Mark
19 (b)(ii)	$\left(\frac{46.8 \times 32}{53.2}\right) = 28.2 / 28.1504 \text{ (atm)}$	28.1 46.8 x 32 =	1
	IGNORE sf except 1	50 29.95 (atm)	
	Value = 28.16 if mol fraction rounded	29.95 (atili)	
	ALLOW TE from (b)(i)		

Question Number	Acceptable Answers	Reject	Mark
19 (b)(iii)	exothermic as yield / pp of ethanoic acid / conversion of reactants/ K_p is higher at lower temperature / as equilibrium moves (right) at lower temperature ALLOW if partial pressure of ethanoic acid < 22.2 atm in (b)(ii), endothermic as yield / pp of ethanoic acid / conversion of reactants/ K_p is lower at lower temperature		1

Question Number	Acceptable Answers	Reject	Mark
19 (c)(i)	No effect and other concentrations change to keep K_p constant / K_p is only affected by temperature/ as equilibrium moves (right) to keep K_p constant / change in pressure does not change K_p	As K _p is a constant	1

Question Number	Acceptable Answers	Reject	Mark
19 (c)(ii)	Yield increased to restore fraction / quotient / partial pressure ratio back to K _p ALLOW (equilibrium moves) to use up the methanol /answers based on entropy or Le	Just	1
	Chatelier Correct prediction in (c)(i) and (c)(ii) with inadequate explanations scores 1 mark in (c)(ii)	'equilibrium moves to the right'	

Question Number	Acceptable Answers	Reject	Mark
19 (d)	Mark independently		2
	Reaction can occur at lower temperature / has lower activation energy / requires less energy (1) less fuel needed / fewer emissions (from fuels) / fewer raw materials needed / less natural resources used (1)	Answer based on car exhaust emissions	
	OR		
	Enables use of an alternative process with higher atom economy (1) fewer raw materials needed / less natural resources used (1)		

Question Number	Acceptable Answers	Reject	Mark
20 (a)(i)	Correct answer with or without working scores 2 marks		2
	$[H^+]$ = (1 .00 x 10 ⁻¹⁴ / 0.250) = 4 x 10 ⁻¹⁴ (1)		
	pH = (13.39794 =) 13.4 (1)		
	OR		
	pOH = -log 0.250 = 0.602 (1)		
	pH = (13.39794 =)13.4 (1)		
	ALLOW TE in second mark if error in [H ⁺] calculation gives pH more than 7 3 or more sf IGNORE rounding errors e.g. accept 13.39		

Question Number	Acceptable Answers	Reject	Mark
20 (a)(ii)	$(K_a =) \frac{[CH_3COO^{=}][H^{\pm}]}{[CH_3COOH]}$ (1)	<u>[H</u> [±]] ² [CH₃COOH]	1
	ALLOW H ₃ 0 ⁺ instead of H ⁺ [A=][H [±]] if key to symbols given [HA] IGNORE state symbols		

Question Number	Acceptable Answers	Reject	Mark
20 (a)(iii)	Correct answer with or without working scores 2 marks		2
	1.7 x $10^{-5} = \frac{[H^{\pm}]^2}{0.125}$ (1)		
	$[H^{+}] = 1.46 \times 10^{-3}$ pH = 2.84/2.8 (1)		
	no TE from an incorrect [H ⁺]		

Question Number	Acceptable Answers	Reject	Mark
20 (a)(iv)	pH = 4.8 / 4.77 (1)		2
	pH = p K_a / [H ⁺] = K_a (when acid is half neutralized) (1)	$H^+ = K_a$	

Question Number	Acceptable Answers	Reject	Mark
20 (a)(v)	Sigmoid curve starting between pH 2 and 4 (2.8), ending between pH 12 and 14 inclusive (1) with steep rise (may be vertical or gently sloping) of between 3 - 7 units between pH 6 and 12. Sloping section should not extend over more than 5cm³. (1) When 12.5 cm³, NaOH added. (1) ALLOW tolerance for grid Reverse curves lose first mark		3

Question Number	Acceptable Answers	Reject	Mark
20 (a)(vi)	First mark Thymolphthalein more suitable as it changes (from colourless to blue) in steep region of titration (pH 8.3 to 10.6)/ at the equivalence point / at the end point OR thymolphthalein has pH range in steep region of titration (1) Second mark Methyl yellow changes (from red to yellow at pH 2.9 to 4) before equivalence point / before the end point / doesn't change in steep section OR Methyl yellow has pH range before / outside steep region of titration (1) ALLOW'Thymolphthalein more suitable as it changes at the equivalence point but methyl yellow does not.' This scores 2 marks OR First mark pK _{in} ± 1 must lie within vertical region on titration curve (1) Second mark hence thymolphthalein is suitable and methyl yellow is not (1)		2

Question Number	Acceptable Answers	Reject	Mark
20 (b)	Sodium ethanoate/ CH ₃ COONa Potassium ethanoate / CH ₃ COOK ALLOW other cations as alternatives to sodium	Use of sodium hydroxide (because it's in food)	1

Question Number	Acceptable Answers	Reject	Mark
21 (a)(i)	$\Delta S_{\text{system}}^{e} = 109.2 + (6x 69.9) - 343$ (1) = (+)185.6(J mol ⁻¹ K ⁻¹) / (+)186 (J mol ⁻¹ K ⁻¹) (1)	185	2
	OR		
	(+)0.186 (kJ mol ⁻¹ K ⁻¹) (2)		
	IGNORE units even if incorrect		
	correct answer with no working scores 2		
	Value using 1 for H ₂ O = -163.9 scores 1		
	Use of value for $H_2O(g)$ (188.7) gives 898.4 (J mol ⁻¹ K ⁻¹) (1)		
	correct value with incorrect sign scores 1		

Question Number	Acceptable Answers	Reject	Mark
21 (a)(ii)	Yes as (solid and) liquid forms (from solid) / number of moles increases OR If ΔS^{e}_{system} in (i) is negative the sign is not as expected as liquid forms from solid / number of moles increases	Disorder increases, with no ref to liquid or number of moles	1

Question Number	Acceptable Answers	Reject	Mark
	First mark		
21 (a)(iii)	$\Delta S^{e}_{surroundings} = -88.1 \times (1000)$ (1)		2
	Second mark		
	= -295.6375		
	= -295.6 J mol ⁻¹ K ⁻¹ (1)		
	correct units must be shown but order not		
	important		
	OR		
	-0.2956 kJ mol ⁻¹ K ⁻¹ (1) correct units must be shown but order not important		
	correct answer with or without working and correct units scores (2) ignore sf except 1		
	correct value with positive sign scores 1		

Question Number	Acceptable Answers	Reject	Mark
21 (a)(iv)	(185.6-295.6) = -110 (J mol ⁻¹ K ⁻¹)	Answers where values in J are added to kJ	1
	OR		
	-0.110 (kJ mol ⁻¹ K ⁻¹)		
	could use 186 or 296 etc		
	TE from (a)(i) and (iii)		
	(+)602.8 (J mol $^{-1}$ K $^{-1}$) if value for 6H $_2$ O(g) was used in (a) (i)		
	-459.5 (J mol $^{-1}$ K $^{-1}$) if value for one H $_2$ O was used in (a) (i)		

Question Number	Acceptable Answers	Reject	Mark
21 (a)(v)	Decomposition (at 298 K) will not occur as ΔS ^θ _{total} is negative / Reactions are only spontaneous if total entropy change is positive / decomposition not thermodynamically feasible / (hydrated cobalt chloride) is thermodynamically stable TE if answer to (a)(iv) is positive showing decomposition (at 298 K) may occur OR Positive total entropy change doesn't indicate rate of reaction		1

Question Number	Acceptable Answers	Reject	Mark
21 (b)(i)	First mark Thermometer (1) Second mark (dependent on first) depends on choosing thermometer as temperature change is small / (%) error in balance smaller than for temperature reading (%) error in pipette smaller than for temperature reading (can be shown by calculation) / as scale with greater degree of precision needed / scale with more graduations needed (1) IGNORE any references to 'accurate thermometer'		2

Question Number	Acceptable Answers	Reject	Mark
21 (b)(ii)	Use more cobalt chloride / less water (1) To increase temperature rise (1) Mark independently	Just 'use more reactants' Use more cobalt chloride and more water repeat expt add a lid or extra insulation to beaker use distilled water	2

Question Number	Acceptable Answers	Reject	Mark
21 (c)(i) QWC	Radius (of cation) increases (down group) OR any two values of radius: Mg ²⁺ = 0.072, Ca ²⁺ = 0.100 / Sr ²⁺ = 0.113 (nm) data may be shown beside the table (1) Radius Co ²⁺ = 0.065 nm	Atomic radii unless ionic radii also given Radius of	4
	OR Co ²⁺ radius smaller than other ions (1) Data on EITHER Co ²⁺ OR data showing increase in radius down Group II required for BOTH of first two marks	cobalt chloride	
	Force of attraction between ions decreases (as radius of ions increases) / charge density of ions decreases / negative ion can come closer to nucleus of positive ion (1) ALLOW "weaker ionic bonds"	Polarising power decreases	
	Predict lattice energy -2550 to -2900 (kJ mol ⁻¹) (1) IGNORE sign		

Question Number	Acceptable Answers	Reject	Mark
21 (c)(ii) QWC	First mark Reference to enthalpy of hydration (may be in equation $\Delta H_{\text{solution}} = -\text{LE} + \Delta H_{\text{hydration}}$) (1) Second mark Solubility depends on relative size of lattice energy and enthalpy of hydration (1) Third mark EITHER Solubility more likely if $\Delta H_{\text{solution}}$ is negative OR (If $\Delta H_{\text{solution}}$ is positive,) may / will dissolve if ΔS_{total} is positive ACCEPT solvation instead of hydration		3

Question Number	Acceptable Answers	Reject	Mark
21 (d) QWC	First mark Third ionization energy high(er) for Mg / Mg = 7733 kJ mol ⁻¹ , (third ionization energy for Co = 3232 kJ mol ⁻¹) (1)		2
	Second mark (Third ionization energy for Mg is high) because the electron is being removed from an inner shell / full shell / 2p level / 2p orbital (1)		
	OR		
	Not compensated by higher lattice energy for Mg^{3+} (and so $\Delta H_{formation}$ of $MgCl_3$ would be highly endothermic) (1)		